Tamper Evident Microprocessors

Adam Waksman
Simha Sethumadhavan
Computer Architecture & Security Technologies Lab (CASTL)
Department of Computer Science
Columbia University

Modern Hardware is Complex

- Modern systems built on layers of hardware
- Complexity increases risk of backdoors
 - More hands
 - Easier to hide
- A significant vulnerability
 - Hardware is the root of trust
 - All hardware and software controlled by microprocessors

Prior Work and Scope

- Microprocessor design stages
 - Front End: Specification, High-Level Design, Logic Synthesis, Place and Route, Layout, Detailed Implementation, Detailed Layout, Placement, and Routing
 - Back End: Physical Design, Tapeout, Fabrication
- Prior work focuses on back end
 - More immediate threat
 - Example: IC fingerprinting [Agrawal et al., 2007]
- Front end is the extreme root
 - Common assumption: golden model from front end
 - Focus of this work

Key Idea: Use Inherent Division of Work

- Bob
 - Nice Guy
 - Donates $100
- Eric
 - Evil Accountant
 - Steals $10
- Alice
 - Charity President
 - Receives $90

Microprocessor Pipeline Stages Analogue

<table>
<thead>
<tr>
<th>Front End</th>
<th>Back End</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specification</td>
<td>Physical Design</td>
</tr>
<tr>
<td>High-Level Design</td>
<td>Tapeout</td>
</tr>
<tr>
<td>Logic Synthesis</td>
<td>Fabrication</td>
</tr>
<tr>
<td>Place and Route</td>
<td></td>
</tr>
<tr>
<td>Layout</td>
<td></td>
</tr>
<tr>
<td>Detailed Implementation</td>
<td></td>
</tr>
<tr>
<td>Detailed Layout</td>
<td></td>
</tr>
<tr>
<td>Placement and Routing</td>
<td></td>
</tr>
</tbody>
</table>

Outline

- Taxonomy
 - Ticking Timebombs, Cheat Codes, Emitters, Corrupters
- Solutions
 - TrustNet and DataWatch
- Results
 - Correctness, Coverage and Costs
- Future Work

Taxonomy of Attacks

- Backdoor = Trigger + Payload
 - Trigger: Turns on an attack
 - Payload: Malicious, illegal action
Taxonomy of Attacks: Triggers

- Data
- Time

Taxonomy of Attacks: Payloads

- Emitter Attacks
 - Extra malicious events
 - Separate from normal events
- Corrupter Attacks
 - No extra malicious events
 - Normal instructions altered

Taxonomy of Attacks: Summary

- Emitter Timebomb
- Corrupter Timebomb
- Emitter Cheatcode
- Corrupter Cheatcode

Assumptions

- Large design team
 - Each designer works on one unit or part of one
 - Security add-ons cannot be done by one member
- Full knowledge
 - Attacker has complete access to all design specifications
 - Attacker also knows about additional security mechanism
- Equal distrust
 - Any one designer/unit may be evil
 - Security add-ons may contain backdoors

Outline

- Taxonomy
 - Ticking Timebombs, Cheat Codes, Emitters, Corrupters
- Solutions
 - TrustNet and DataWatch
- Results
 - Correctness, Coverage and Costs
- Future Work

Sample Emitter Backdoor

- Consider a malicious instruction decoder
- Decoder emits instructions not in the original program
- Execution unit faithfully executes them
TrustNet

- Predictor and Reactor monitor the Target
- Division of work prevents one bad guy from breaking two units
- Scaling to larger number increases design complexity

Corrupter Backdoors

- Bob
 - Still nice
 - Donates $100

- Eric
 - Evil (and smarter)
 - Converts to Canadian $

- Alice
 - Still president
 - Fooled by Eric’s C$100

DataWatch

- Scaled up version of TrustNet
- Multiple bit messages
- Confirms types of messages (instead of just yes/no)

Outline

- Taxonomy
 - Ticking Timebombs, Cheat Codes, Emitters, Corrupters

- Solutions
 - TrustNet and DataWatch

- Results
 - Correctness, Coverage and Costs

- Future Work

Experimental Context, Correctness, Costs

- Context
 - Simplified OpenSPARC T2

- Correctness
 - Designed attacks
 - No false positives or negatives

- Costs
 - Low area overhead (2 KB per core)
 - No performance impact

- How to measure coverage?

Coverage: Vulnerability Space

Paper has plots for other units at a chip level
Summary and Future Work

- **Strengthen root of trust: microprocessors**
 - Hardware-only solution. No perf impact, low area overhead
 - Security add-on highly resilient to corruption
- **Applicability of TrustNet & DataWatch**
 - Covered: pipelines, caches and content associative memory
 - Not covered: ALU, microcode, power mgm., side-channels
- **Moving Forward**
 - Expand coverage
 - Out-of-order processors
 - Motherboard components
 - Design automation tools
 - Reaction to errors
 - Applying techniques for reliable execution
 - **First steps toward a secure trusted hardware w/ untrusted units**

Thank You! and Questions?