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Fuzzing/Fuzz Testing

Feed target applications with malformed inputs
e.g., invalid, unexpected, or random test cases

a Proven to be remarkably successful

o E.g., randomly mutate well-formed inputs and runs
the target application with the “mutations”
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Fuzzing is great

In the best case, malformed
inputs will explore different
program paths, and trigger
security vulnerabilities

However...
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A quick example

re-compute a new
checksum

>

void decode_image (FILE* fd) {

e T read the attached
int recomputed chksum = checksum(fd, length);
int chksum in file = get_ checksum(£d) ; checksum

ine 6 is used to che he integrit

LIS

if (chksum_in file != recomputed_chksum)

6

7 error();

8 int Width = ge width (fd) ;

) int Height = get height (£d); compare tow values
10 int size = Width*Height*sizeof (int) ;/)<——o rertow

Malformed images will be dropped when the decoder
function detects checksums mismatch
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Checksum: the bottleneck

Checksum is a common way to test the integrity
of input data

Most mutations are blocked
at the checksum test point
:> if (checksum (Data) '= Chksum)
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Our motivation

Penetrate checksum checks!

Our Goal
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Intuition

Disable checksum checks by control flow alteration

if (checksum (D) '= Chroum)
goto L1,

. exit();

4Ll

continue () ;

Modgined program
Fuzz the modified program

Repair the checksum fields in malformed inputs
that can crash the modified program
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Key Questions

Q1: How to locate the checksum test
instructions in a binary program?

Q2: How to effectively and efficiently fuzz for
security vulnerability detection?

Q3: How to generate the correct checksum
value for the invalid inputs that can crash the
modified program?
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TaintScope Overview

Modified Crashed
Program Samples

Checksum Directed Checksum
Locator Fuzzer Repairer

Instruction Hot Bytes Info @
. . Reports
Execution Monitor

A1: Locate the checksum test instruction

Key Observation 1
Checksum is usually used to protect a large number
of input bytes
I Data I Chlleuml
L Y J
if (checksum (D) !'= Chicsum)

Based on fine-grained taint analysis, we first find the
conditional jump instructions (e.g., jz, je) that depend
on more than a certain number of input bytes

Take these conditional jump instructions as candidates
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A1: Locate the checksum test instruction

Key Observation 2

Well-formed inputs can pass the checksum test,
but most malformed inputs cannot

We log the behaviors of candidate
conditional jump instructions

Introduction TaintScope Conclusion




A1: Locate the checksum test instruction

Key Observation 2

Well-formed inputs can pass the checksum test,
but most malformed inputs cannot

We log the behaviors of candidate
conditional jump instructions
® Run well-formed inputs, identify the
always-taken and always-not-taken insts
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A1: Locate the checksum test instruction

Key Observation 2

Well-formed inputs can pass the checksum test,
but most malformed inputs cannot

We log the behaviors of candidate
conditional jump instructions
® Run well-formed inputs, identify the
always-taken and always-not-taken insts
@ Run malformed inputs, also identify the
always-taken and always-not-taken insts
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A1: Locate the checksum test instruction

Key Observation 2

Well-formed inputs can pass the checksum test,
but most malformed inputs cannot

We log the behaviors of candidate
conditional jump instructions
® Run well-formed inputs, identify the
always-taken and always-not-taken insts
@ Run malformed inputs, also identify the
always-taken and always-not-taken insts
® Identify the conditional jump inst that
behaves completely different when

processing well-formed and malformed “ e —ar— o
inputs
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A2: Effective and efficient fuzzing

Blindly mutating will create huge amount of redundant test
cases --- ineffective and inefficient

( Directly modifying “width” or “heightj

1 void decode_image (FILE

fields will trigger the bug easily

6 if (chksum_in file !=
goto 8;

error();

8 int Width = get_width(£d);
9 int Height = get_ height (£d);
10 int size = Width*Height*sizeof (int);//integer overflow
11 int* p = malloc(size);

12 ..

Directed fuzzing: focus on modifying the “hot bytes” that
refer to the input bytes flow into critical system/library calls
o Memory allocation, string operation...
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A3: Generate the correct checksum

The classical solution is symbolic execution
and constraint solving
Solving checksum (Daw) == Cienis hard or

impossible, if both Daw and Ciw.. are symbolic values

We use combined concrete/symbolic execution
o Only leave the bytes in the checksum field as symbolic values

o Collect and solve the trace constraints on Ciws.n when reaching the
checksum test inst.

o Note that:
checksum (D..) isaruntime determinable constant value.

Chsumoriginates from the checksum field, but may be transformed, such
as_from hex/oct to dec number, from little-endian to big-endian.
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Design Summary

Directed Fuzzing

o Identify and modify “hot bytes” in valid inputs to
generate malformed inputs
On top of PIN binary instrumentation platform
Checksum-aware Fuzzing
o Locate checksum check points and checksum fields.
o Modify the program to accept all kinds input data
o Generate correct checksum fields for malformed
inputs that can crash the modified program
Offline symbolically execute the trace, using STP solver
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‘ Evaluation

= Component evaluation

o Ei: Whether TaintScope can locate checksum
points and checksum fields?

o E2: How many hot byte in a valid input?
a E3: Whether TaintScope can generate a correct
checksum field?
= Overall evaluation

o E4: Whether TaintScope can detect previous
unknown vulnerabilities in real-world applications?
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Evaluation 1: locate checksum points

= We test several common checksum algorithms, including
CRC32, MDs, Adler32. TaintScope accurately located the
check statements.
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'Evaluation 2: identify hot bytes

= We measured the number of bytes could affect the size
arguments in memory allocation functions

‘ Evaluation 3: generate correct checksum

fields

= We test malformed inputs in four kinds of file
formats.
= TaintScope is able to generate correct checksum

fields.
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[ Executable | File Format [ # fields | [field[ | Repaired? | Time (s)
display PNG I 3 7 2719
tepdump PCAP 8 2 v 455.6
tar Tar Archive 3 8 Vi 572.8
objcopy Intel HEX 4 2 IV 327.1
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‘ Evaluation 4 : 27 previous unknown vulns
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Evaluation 4: 27 previous unknown vulns
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‘ Conclusion

= Checksum is a big challenge for fuzzing tools

= TaintScope can perform:

o Directed fuzzing
= Identify which bytes flow into system/library calls.
= dramatically reduce the mutation space.

o Checksum-aware fuzzing

= Disable checksum checks by control flow alternation.

= Generate correct checksum fields in invalid inputs.

= TaintScope detected dozens of serious
previous unknown vulnerabilities.

l Introduction | TaintScope | Conclusion

Thanks for your attention!




