31st IEEE Symposium on Security & Privacy »

TaintScope: A Checksum-Aware
Directed Fuzzing Tool for Automatic
Software Vulnerability Detection

Tielei Wang', Tao Wei', Guofei Gu*, Wei Zou'
'Peking University, China
*Texas A&M University, US

Outline

Introduction
o Background
o Motivation
TaintScope
o Intuition

o System Design

o Evaluation "
Microsoft (GO gle '\‘
Conclusion Adobe

Fuzzing/Fuzz Testing

Feed target applications with malformed inputs
e.g., invalid, unexpected, or random test cases

a Proven to be remarkably successful

o E.g., randomly mutate well-formed inputs and runs
the target application with the “mutations”

——— | Application | —— %

‘ Introduction TaintScope Conclusion ‘ s

Fuzzing is great

In the best case, malformed
inputs will explore different
program paths, and trigger
security vulnerabilities

However...

Introduction TaintScope [Conclusion ‘ P

A quick example

re-compute a new
checksum

>

void decode_image (FILE* fd) {

e T read the attached
int recomputed chksum = checksum(fd, length);
int chksum in file = get_ checksum(£d) ; checksum

ine 6 is used to che he integrit

LIS

if (chksum_in file != recomputed_chksum)

6

7 error();

8 int Width = ge width (fd) ;

) int Height = get height (£d); compare tow values
10 int size = Width*Height*sizeof (int) ;/)<——o rertow

Malformed images will be dropped when the decoder
function detects checksums mismatch

‘ Introduction [TaintScope [Conclusion

Checksum: the bottleneck

Checksum is a common way to test the integrity
of input data

Most mutations are blocked
at the checksum test point
:> if (checksum (Data) '= Chksum)
-~
- /
(1N
A /I/
\ E g /

Introduction TaintScope [Conclusion p

Our motivation

Penetrate checksum checks!

Our Goal
—> =
-)
(1N
A\ /)/
\ Eg /
Introduction TaintScope [Conclusion

Intuition

Disable checksum checks by control flow alteration

if (checksum (D) '= Chroum)
goto L1,

. exit();

4Ll

continue () ;

Modgined program
Fuzz the modified program

Repair the checksum fields in malformed inputs
that can crash the modified program

‘ Introduction [TaintScope [Conclusion ‘

Key Questions

Q1: How to locate the checksum test
instructions in a binary program?

Q2: How to effectively and efficiently fuzz for
security vulnerability detection?

Q3: How to generate the correct checksum
value for the invalid inputs that can crash the
modified program?

‘ Introduction [TaintScope [Conclusion

TaintScope Overview

Modified Crashed
Program Samples

Checksum Directed Checksum
Locator Fuzzer Repairer

Instruction Hot Bytes Info @
. . Reports
Execution Monitor

A1: Locate the checksum test instruction

Key Observation 1
Checksum is usually used to protect a large number
of input bytes
I Data I Chlleuml
L Y J
if (checksum (D) !'= Chicsum)

Based on fine-grained taint analysis, we first find the
conditional jump instructions (e.g., jz, je) that depend
on more than a certain number of input bytes

Take these conditional jump instructions as candidates

‘ Introduction [TaintScope [Conclusion ‘ "

A1: Locate the checksum test instruction

Key Observation 2

Well-formed inputs can pass the checksum test,
but most malformed inputs cannot

We log the behaviors of candidate
conditional jump instructions

Introduction TaintScope Conclusion

A1: Locate the checksum test instruction

Key Observation 2

Well-formed inputs can pass the checksum test,
but most malformed inputs cannot

We log the behaviors of candidate
conditional jump instructions
® Run well-formed inputs, identify the
always-taken and always-not-taken insts

Introduction TaintScope [Conclusion ‘

A1: Locate the checksum test instruction

Key Observation 2

Well-formed inputs can pass the checksum test,
but most malformed inputs cannot

We log the behaviors of candidate
conditional jump instructions
® Run well-formed inputs, identify the
always-taken and always-not-taken insts
@ Run malformed inputs, also identify the
always-taken and always-not-taken insts

L

_ri_ri_ri i S St

Introduction TaintScope [Conclusion ‘

L

A1: Locate the checksum test instruction

Key Observation 2

Well-formed inputs can pass the checksum test,
but most malformed inputs cannot

We log the behaviors of candidate
conditional jump instructions
® Run well-formed inputs, identify the
always-taken and always-not-taken insts
@ Run malformed inputs, also identify the
always-taken and always-not-taken insts
® Identify the conditional jump inst that
behaves completely different when

processing well-formed and malformed “ e —ar— o
inputs

Introduction TaintScope [Conclusion ‘

A2: Effective and efficient fuzzing

Blindly mutating will create huge amount of redundant test
cases --- ineffective and inefficient

(Directly modifying “width” or “heightj

1 void decode_image (FILE

fields will trigger the bug easily

6 if (chksum_in file !=
goto 8;

error();

8 int Width = get_width(£d);
9 int Height = get_ height (£d);
10 int size = Width*Height*sizeof (int);//integer overflow
11 int* p = malloc(size);

12 ..

Directed fuzzing: focus on modifying the “hot bytes” that
refer to the input bytes flow into critical system/library calls
o Memory allocation, string operation...

‘ Introduction [TaintScope [Conclusion ‘

A3: Generate the correct checksum

The classical solution is symbolic execution
and constraint solving
Solving checksum (Daw) == Cienis hard or

impossible, if both Daw and Ciw.. are symbolic values

We use combined concrete/symbolic execution
o Only leave the bytes in the checksum field as symbolic values

o Collect and solve the trace constraints on Ciws.n when reaching the
checksum test inst.

o Note that:
checksum (D..) isaruntime determinable constant value.

Chsumoriginates from the checksum field, but may be transformed, such
as_from hex/oct to dec number, from little-endian to big-endian.

Introduction TaintScope Conclusion

Design Summary

Directed Fuzzing

o Identify and modify “hot bytes” in valid inputs to
generate malformed inputs
On top of PIN binary instrumentation platform
Checksum-aware Fuzzing
o Locate checksum check points and checksum fields.
o Modify the program to accept all kinds input data
o Generate correct checksum fields for malformed
inputs that can crash the modified program
Offline symbolically execute the trace, using STP solver

‘ Introduction [TaintScope [Conclusion ‘

‘ Evaluation

= Component evaluation

o Ei: Whether TaintScope can locate checksum
points and checksum fields?

o E2: How many hot byte in a valid input?
a E3: Whether TaintScope can generate a correct
checksum field?
= Overall evaluation

o E4: Whether TaintScope can detect previous
unknown vulnerabilities in real-world applications?

ntroduction | TaintScope [conduson |,

Evaluation 1: locate checksum points

= We test several common checksum algorithms, including
CRC32, MDs, Adler32. TaintScope accurately located the
check statements.

Fecuiale | Package (Version | Pl Fomar | Checksan Algoritin |14] 1Per Diecied?
PicmaPhowNiewer | Googhe Picasa (11) i e AH) v
Aciobal Adabe Acrobal (9157 FNG CRCI2 LR T W
snon (284 Ty o~ s p 4 7
/ HIP checks ¥
e (3007 PCAP TCPAP checksam : v 5
Clammay (1,95 2) [WIS 7 T 7
open-voifl (1.6) VOO Adlerix] T y
GNU Tar (1.22) Tor Archive Tor checksam]] v
R binils (2177 Tl HEX | Taiel HEX checksum || 62 T 7
Introduction TaintScope Conclusion 2

'Evaluation 2: identify hot bytes

= We measured the number of bytes could affect the size
arguments in memory allocation functions

‘ Evaluation 3: generate correct checksum

fields

= We test malformed inputs in four kinds of file
formats.
= TaintScope is able to generate correct checksum

fields.

Executable Package | Input Formar || Input Size {Byie:
3T T1
il T TE || FLA06 | Tk
T T 1 T 4Ty
Display ImapeMagick BNG LAL 1] ;:‘:‘é;‘r“ 1 “]':;.s\
TT || 35983807 Tl s |
e | A | Tl T
- [EN EEEE T3S
! b T IsTs
. i | - Smlts
PicasaPhotoViewerese | Google Picasa PNG ol
| TmTs
paead T
| Amiss
ik [B O T
| L ol B
Acrobatexe Adobe Acrobat PNG T! ﬁlm::uﬁ JA:‘\'T:
T3 | 3EIEIIT | dAmils
i]| 3SE36A5T | s
Introduction TaintScope Conclusion ”

[Executable | File Format [# fields | [field[| Repaired? | Time (s)
display PNG I 3 7 2719
tepdump PCAP 8 2 v 455.6
tar Tar Archive 3 8 Vi 572.8
objcopy Intel HEX 4 2 IV 327.1
Introduction TaintScope | Conclusion »

V Q- :
W ‘w» Picasa.
MS Paint Google Picasa Adobe Acrobat ImageMagick
~—
~
gstreamer EATINE XEmacs

irfanview gstreamer Winamp XEmacs

- wxWidgets

Amaya dillo wxWidgets PDFlib
Introduction TaintScope Conclusion ”

‘ Evaluation 4 : 27 previous unknown vulns

" e R R T S A

Acknowledgments
Microsoft thanks the fobowing for working with s to help protect customers:

- Damian Frizza of C for reparting an issue descrbed in MS10-003

« Carsten Eiram ol ing Bn isdue described in M510-004

« Sean Larsson of s& Labs for reportng three ssues described in M510-004

« Sk, working with tive, for reporting an ssue described in M510-004

« Cody Perce of T 3 for repoarting an issue described n M510-004

er of Info Security, Insttite of Computer Sdence & Technalogy, Peking
1ting an ssue described n M510-005

« [Tielei Wang of
Linrversty/!

Evaluation 4: 27 previous unknown vulns

Fatage Voo Tope # Vil | Checloum-aware? | Advisory Tevery Baiing

Microsoll Paint || Memory Cormuptaon 1 N CYE-2010-0028 | Moderate

- Tafinite Toop T pending WA
Google Pl e e rilow T N TATAT Whoderaie

ac Tnfinite Joop 1 N “VE-2009-2993 | Exiremely critical
Adobe Acrobat B | bl S0-3950 | Extremely critical
Tmagehagick Tmieger Overflow] b -S- 1357 | Moderate
Tl Toileger Overflow T v S T6ED | Maoderaie
LiBTTl Tieger Overllow i b -S00-253T | Muoderate
wiWidgets f porier Crerllow : s -2009-2369 | Moderate
Trianview per Overfiow 1 N CVE-2009-2118 | High
GEtreamer Tiic; TverTiow I ¥ CVE-TINA-T937 | Moderate
Dilk Inmeger Overflow 1 A High
XEmacs T ger Overiiow 3 T Moderale
o Null Tereference T N WA
MPlayer Mull Derelerence F] N NIA
POFIB-Tie Tricger Overflow T v WModeraie
Amaya Tmeger Civerflow i h) SAMEA High
Winamp Bufter Overilon T N SATETH High
Total 37
Introduction TaintScope Conclusion -

‘ Conclusion

= Checksum is a big challenge for fuzzing tools

= TaintScope can perform:

o Directed fuzzing
= Identify which bytes flow into system/library calls.
= dramatically reduce the mutation space.

o Checksum-aware fuzzing

= Disable checksum checks by control flow alternation.

= Generate correct checksum fields in invalid inputs.

= TaintScope detected dozens of serious
previous unknown vulnerabilities.

l Introduction | TaintScope | Conclusion

Thanks for your attention!

