SCiFI – A system for Secure Computation of Face Identification

Margarita Osadchy, Benny Pinkas, Ayman Jarrous, Boaz Moskovitch
University of Haifa
Face recognition technology

face identification
 (surveillance)
 arbitrary conditions

face identification
 (login)
 controlled conditions
We focus on the surveillance problem

Example scenario:

- a government has a list of suspects
- wants to identify them in a crowd

surveillance
Face recognition in surveillance

• Privacy problem: the ubiquity of surveillance is a major concern for the public
 – Can be misused to track people regardless of suspicion
 – Can be combined with a universal database linking faces to identities (e.g., drivers' license photos)
A solution to the privacy concern

Not acceptable if the list of suspects is confidential, as is often the case.
Our approach: protecting the privacy of the public and the confidentiality of the data.

Server stores suspects database

Secure computation

Client

Operator

only learn match / no match

Server stores suspects database

match / no match
System architecture

Client

- Acquires an image
- Generates representation of image
- Runs secure protocol
- Output: match / no-match

Server

- Input: set of images of suspects
- Runs secure protocol
- Output: match / no-match
System architecture

Client
- Acquires an image
- Generates representation of image
- Runs secure protocol
- Output: match / no-match

Server
- Input: set of images of suspects
- Runs secure protocol
- Output: match / no-match

Protocol enforces an upper bound on the size of the database used by the server.
The Problem

• Exact / fuzzy match
 – Secure computation of exact matches is well known.
 – Face identification is fuzzy. A match is between close, but not identical, images.

• Continuous / discrete math
 – Face recognition algorithms use continuous face representations, and complex measures of similarity.
 – Secure computation is always applied to discrete numbers. Best with linear operations.
 – Simple quantization of face recognition algorithms results in poor performance.
Our Contributions

• A new and unique **face identification algorithm**
 – Specifically designed for secure computation
 – Has state-of-the-art **recognition** performance
 – Assumes only a **single** image is known per suspect
• A **secure protocol** for computing face identification
• **SCiFI** - A system implementing the protocol

• Previous work [EFGKLT09]: secure computation of the well known Eigenfaces face recognition algorithm.
 • Performance of eigenfaces is inferior to state-of-the-art.
 • The secure protocol is less efficient than ours.
New Face Representation: Patch-Based Face Representation

- A face is represented by a collection of informative patches:

 ![Image of a face with patch centers and patch sizes indicated]

 - Patch centers
 - Patch size – could vary

- Assume that the face is represented by p patches.
A public database (gallery) of N faces

\Rightarrow A dictionary of N values for each patch
Indexing

Each patch is represented by the 4 closest patches in the dictionary.
Representing a face

For each of the p patches, store indices of the 4 closest patches in the dictionary.
Representing a face

For each of the p patches, store indices of the 4 closest patches in the dictionary.

Representation: vector with p entries, each with 4 values in the range of $[1,N]$. Alternatively, a **binary representation**: a binary vector of $p \cdot N$ bits, where $4p$ of the bits equal 1.
Similarity between faces

• We define the difference between faces as the set difference between their representations
\[\Delta(A,B) = |A \cup B| - |A \cap B| \]

• Set difference \(\equiv \) Hamming distance between binary representation of faces

• Secure computation of Hamming distance is easy [JP09]
Cryptographic Protocol

• Functionality:
 – Client and server each have a binary vector representing a face.
 – Output 1 iff Hamming distance < threshold.

• Tools
 – Additively homomorphic encryption
 • Given $E(x)$, $E(y)$ can compute $E(x+y)$
 – Oblivious transfer
 • A two-party protocol where receiver can privately obtain one of two inputs of a sender
The protocol in a nutshell
(details and proof in the paper)

• Inputs are vectors \(w = w_0, \ldots, w_{m-1}; \ w' = w'_0, \ldots, w'_{m-1} \).
• Client sends \(E(w_0), \ldots, E(w_{m-1}) \)
• Server uses homomorphic properties
 – To compute \(E(w_0 \oplus w'_0), \ldots, E(w_{m-1} \oplus w'_{m-1}) \)
 – To sum these values and obtain \(E(d_H(w, w')) = E(d) \)
• Server chooses random \(R \); sends \(E(d+R) \) to client
• Client decrypts \(E(d+R) \), reduces the result mod \(m+1 \).
• Both parties run a 1-out-of-(\(m+1 \)) OT, where client learns 1 if Hamming distance < threshold.
Optimizations

• **Main goal:** minimize *online* latency, to identify suspects in real time.

• **Methods used:**
 – Change protocol s.t. oblivious transfer and most communication can be done *before* image is recorded.
 – Prefer more efficient homomorphic operations:

 \[
 \text{addition} \lll \text{encryption} < \text{subtraction}
 \]
Online overhead

• A face is represented by a 900 bit vector.

• **Overhead after the client captures an image:**
 – Client sends 900 bits to server
 – For every image in server’s database
 • Server performs 450 homomorphic additions
 • Server sends a single encryption to client
 • Client decrypts the encrypted value
 • Run a *preprocessed* OT: client sends 8 bits to server; server sends 180 bits to client.
Recognition experiments

- Ran experiments with *standard databases* used by the face recognition community.
- Tested **robustness** to illumination changes, small changes in pose, and partial occlusions.

Robustness compared to Eigenfaces

Robustness to partial occlusions
Implementation

• **Face recognition** part (generating representations of images)
 – Implemented in **Matlab**, ran using Matlab Java builder.

• **Cryptographic** protocol
 – Implemented in **Java**, using Paillier and ElGamal based OT.

• **Timing on Linux servers:**
 – ~0.3 sec to compare to a single image in the database
 – An Implementation in C will be much faster
 – Easily parallelizable
The database
The suspect
The suspect

[Image of a person with glare in their eyes]
An image is obtained by the client

- no glasses
- slightly different pose
- different clothes
Facial features are recognized
Face representation is ready
Secure protocol is run, a match is found
Live demo available upon request
Conclusions

• **Goal:** Face recognition based surveillance, respecting subjects privacy.

• **Means:**
 – A new and unique face identification algorithm
 • State of the art robustness
 • Suitable for secure computation
 – A secure protocol with optimized online runtime
 – Experiments verifying robustness and performance