Inspector Gadget
Automated Extraction of Proprietary Gadgets from Malware Binaries

Clemens KOLBITSCH Thorsten HOLZ
Engin KIRDA Christopher KRUEGEL

ck@iseclab.org

Int. Secure Systems Lab
Vienna University of Technology, Institute Eurecom Sophia Antipolis, UC Santa Barbara
Motivation

- Analysis of malicious code is challenging
Motivation

- Analysis of malicious code is challenging
- Looking at the inner workings of every samples has become infeasible
 - ... due to various obfuscation techniques
 - ... due to analysis resistance (e.g., anti-debugging techniques)
 - ... due to the huge number of malware families / variants
Motivation

• Analysis of malicious code is challenging

76 172 submissions

58 041 new samples
Motivation

- Analysis of malicious code is challenging
- Looking at the inner workings of every samples has become infeasible
 - ... due to various obfuscation techniques
 - ... due to analysis resistance (e.g., anti-debugging techniques)
 - ... due to the huge number of malware families / variants
- Results of dynamic analysis is cluttered by other behavior sample is capable of
Motivation

- Results of dynamic analysis is cluttered by other behavior sample is capable of:
 - Component installation
 - Binary update
 - Target selection
 - C & C communication
 - C & C location
 - Spam templating
Motivation

• Results of dynamic analysis cluttered by other behavior sample is capable of

• Dynamic analysis is very resource consuming...

• … and only provides temporary snapshot
 – malicious behavior might dependent on
 • analysis date & time
 • analysis environment (e.g., username, host OS, …)
 • availability of remote resources (e.g., C&C hosts)
 – needs to be repeatedly performed on single sample
 • at different points in time
 • preferably on different systems
 • even more time/resource consuming
Motivation – Inspector

Wouldn't it be cool if we were able to extract a single behavior into a standalone component and use this to re-invoke the behavior?

• Removes clutter from analysis results
• Independent of other malicious activity
 – can be executed without virtual environment
• Easy to replay in a different situation such as
 – point in time
 – operating system
Motivating Example

• **Conficker** Domain Generation Algorithm (DGA)
 – decides which remote host to contact for C&C
 – domain depends on *current time*
 – current time is fetched from a remote host (e.g., msn)
Motivating Example

- **Conficker** Domain Generation Algorithm (DGA)
 - Decides which remote host to contact for C&C
 - Domain depends on current time
 - Current time is fetched from a remote host (e.g., msn)

- Component installation
- Binary update
- Target selection
- Spam templating
- C & C location
- C & C communication

```
armzasn.net
kevflnwroo.com
dzqbpieiy.info
rkxiea.biz
komug.net
vhiax.org
```

```
220 mx.google.com
250 google
250 PIPELINING
250 SIZE 10240000
250 VRFY
250 STARTTLS
```
Outline

• Motivation
 – dynamic analysis reveals limited, temporary behavior

• Behavior analysis & extraction
 – storing identified behavior into gadget

• Behavior re-invocation
 – gadget player
 – gadget inversion

• So... again, why...?
 – benefit recap

• Gadget examples
Behavior Analysis and Extraction
Extraction Overview
Extraction Overview

step 1: dynamic analysis

Find interesting behavior that is to be extracted.
Example: *Hm, to which domain am I connecting here??*
Extraction Overview

Int. Secure Systems Lab
Vienna University of Technology

step 2: behavior identification

control flow & instructions

Map selected behavior to analyzed process & thread, API accesses and control flow.

outcome: API call / flow position
Extraction Overview

Anubis

step 2.1: identification refinement

Find and suggest data manipulating instructions after chosen API call. Possibly refine chosen position to include the data processing.

control flow & instructions
Extraction Overview

API taint dependencies
memory accesses

control flow &

step 3: backward program

call func1
add %esp
...
call func2
add %esp
call func3

call StartS
pop %eax
push "abc"
call DnsQry

StartService
DnsQuery_W
Extraction Overview

call func1
add %esp
...
call func2
add %esp
call func3

call StartS
pop %eax
push "abc"
call DnsQry

...call connect
jmp L_1
L_0:
call recv
...
L_1:
test %eax
je L_0

connect
recv
WSAStartup
DnsQuery_W

API taint
Extraction Overview

Int. Secure Systems Lab
Vienna University of Technology

Inspector Gadget
Extraction Overview

Inspector Gadget

Int. Secure Systems Lab
Vienna University of Technology
Extract gadget (standalone Dll) that can be imported into any (binary) application offering environment hooks.
Gadget Replay
Gadget Player

• As library, the gadget can be reused in many areas
 – statically linked into the application
 – dynamically loadable

• … but, application must confine gadget execution
 – handle crashes (e.g., possible, invalid memory accesses)
 – one possibility: code emulation
 – here: separate, monitored thread with signal handling

• … and mediate accesses to the host OS
 – gadgets are guaranteed to contain no calls to system or API functionality directly
 – each access is done through environment hooks
Host OS accesses mediation: environment hooks
- every system / API call is redirected to the gadget player (using a multiplexor function)
- player has the possibility to sanitize and/or manipulate call parameters
- if player decides to allow the API invocation, call and parameters are forwarded to the actual implementation (e.g., inside a Windows library)
Gadget Inversion

- Player can use gadget as *transformation oracle*
 - *input* is transformed into *output*, depending on algorithm implemented by gadget
 - example: sample reads local data, obfuscates, and transmits to remote host
Gadget Inversion

• Player can use gadget as *transformation oracle*
 – *input* is transformed into *output*, depending on algorithm implemented by gadget
 – example: sample reads local data, obfuscates, and transmits to remote host

• In many scenarios, the inverse algorithm would be interesting, however
 – we capture obfuscated traffic and want the plain-text data that has was transmitted
Gadget Inversion

- Player can use gadget as *transformation oracle*
 - *input* is transformed into *output*, depending on algorithm implemented by gadget
 - example: sample reads local data, obfuscates, and transmits to remote host

- In many scenarios, the inverse algorithm would be interesting, however
 - we capture obfuscated traffic and want the plain-text data that has was transmitted

- In the paper, we present basic inversion capabilities:
 - *detect* (taint) *dependencies* between bytes in input and output
 - apply guided *brute-force* heuristics to invert algorithm contained in the gadget
So … again, why…?
Gadget Benefits

- ... so why not simply execute it in a VM (over and over again)?
 - *sleep timeouts*: can be eliminated during gadget extraction
 - *fast & lightweight analysis*:
 - no virtual environment, snapshot restoring
 - *we ran our analysis on Linux (under Wine)!*
 - *precise, uncluttered behavior observation*
 - *advanced monitoring*: the player has access to the gadget's heap and stack regions!
 - *environment tampering*: all requests go through a single interface: tamper with date or time, registry settings, hostOS, remote hosts contacted, ...
Gadget examples
Conficker DGA

- *Conficker* generates (pseudo) random domain names upon startup
- Current time, fetched from remote site (e.g., msn.com), controls domain generation randomization seed
- Randomly selected domain name is used for contacting C&C host
- **Gadget:**
 - start extraction (slicing) from invocation of `DnsQuery_W`
 - extracts complete *Domain Generation Algorithm* (DGA)
 - see *one domain* on query invocation
 - find *all domains* on gadget heap
- Possible environment tampering:
 - manipulate remote site's reply to change DGA input (i.e., date for which domains are generated)
P. Porras et al. “A Foray into Conficker’s Logic and Rendezvous Points

Inspector Gadget control flow “debug output”
Cutwail Spam Templating

- *Cutwail* (mass-mailer) generates spam Emails from *templates* downloaded from remote C&C hosts
- Communication employs proprietary encryption algorithm
- Template is not stored on file system
 - content decrypted and handled solely in memory
- Gadget:
 - inspect download behavior
 - start extraction after download is complete
 - *Inspector* suggests to automatically refine extraction starting-point to *end-of-decryption*
 - extract complete template download & decryption algorithm
"{_FIRSTNAME} {LASTNAME}" <{MAIL_FROM}>

Hello my new friend, I search a good man at other country...
For me it to communicate for the first time with the person from other country, by Internet.
...

{nReceived}
Message-ID: <{DIGIT[10]}.{SYMBOL[8]} {DIGIT[6]} @nHOST>
From: {TAGMAILFROM}
To: <{MAIL_TO}>
Subject: {SUBJECT}
Date: {DATE}
MIME-Version: 1.0
Content-Type: multipart/mixed;
boundary="--=_NextPart_000_0006_{_nOutlook_Boundary}"
X-Priority: 3
X-MSMail-Priority: Normal
X-Mailer: Microsoft Outlook Express {_nOutlookExpress_4}
Cutwail Spam Templating

Inspector Gadget

Int. Secure Systems Lab
Vienna University of Technology

configver 194
addr 91.206.231.230
port 25
knockdelay 60
mxrecvtimeout 120
mxconntimeout 120
maxtrybadfrom 1
maxtryconn 5

FIRSTNAME
Christi
Lea
Staci
Jodie
Summer
Katharine
...

LASTNAME
Schafer
Stacy
Grayson
Ham
Landers
Mims
Parham
Pritchett
...

name
Lusia R., Texas
Lusia R., New York
Lusia R., Chicago
Lusia R., Colorado
Lusia R., Boston
Lusia R., Washington
Lusia R., Las Vegas
Lusia R., Bellevue WA
Lusia R., San Diego
Amelia B., Chicago
...

nHOST
{nChar[5-15]}.{nChar[5-15]}
.{LET:ru,org,com,va,net,biz, info,tv,ua,su}

nReceived
Received: from [{nIP}]
 (helo={nHOST})
 {N[1]}by {BOT_HOST}
...

...
URLZone Config Update

• **URLZone** (BHO banking-trojan) sniffs and manipulates user interaction with banking web-site

• Steals credentials and hides previous (malicious) transactions from user

• Remote configuration through encrypted configuration files
 – domains to attack
 – URLs to inspect
 – form content to modify

• Gadget:
 – extract complete template download & decrypt algorithm
 – similar to *Cutwail* gadget
URLZone Config Update

Int. Secure Systems Lab
Vienna University of Technology

=============POST==============

[ITBEGINBLOCKHOOK]
ITHOST=|banking.postbank.de|End
ITPAGE=|/app/login.d*|End
ITMETHOD=|2|End
ITIFINIT=|%DISP%|End
ITREQMATH=|jsOn=*&accountNumber=*&pinNumber=*|End

------------- STATA -------------

ITINJHOST=|my.hypovereinsbank.de|End
ITINJPAGE=|/*?view=*/|End
...
ITINJSTART=|Aktueller Kontosaldo</label>[*]
 <p class="right">|End
ITINJEND=|</p>|End
ITINJCODE=||End
ITINJPASTE=|%HYPOBAL%+%AMOUNT%-%TRUEAMOUNT%|End
ITINJPASTEMN=%HYPOBAL%+%AMOUNT%-%TRUEAMOUNT%EUR|End
Summary

• Dynamic analysis is resource consuming, results are cluttered and limited to temporary snapshots of malicious behavior

• *Inspector* allows to automatically extract behavior into standalone *gadgets*

• Gadgets can be reused in many scenarios and
 – enhance information extraction
 – simplify repeated analysis of behavior

• Evaluation shows that extraction is applicable to real world, malicious programs
Thanks for listening!