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Anomaly Detection

Training Phase: Building a profile of normal activity.
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Anomaly Detection

Detection Phase: Matching observations against profile.
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Detection Phase: Matching observations against profile.
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Anomaly Detection (2)

® Assumption: Attacks exhibit characteristics that are
different than those of normal traffic.

® Originally introduced by Dorothy Denning in1987.

® |DES: Host-level system building per-user profiles of activity.
® Login frequency, password failures, session duration, resource consumption.

-~

3!
FrrFeees .ml
ERKELEY LAB .




Anomaly Detection (2)

Technique Used

Section

References

Statistical Profiling
using Histograms

Parametric Statisti-
cal Modeling
Non-parametric Sta-
tistical Modeling
Bayesian Networks

Neural Networks

Support Vector Ma-
chines
Rule-based Systems

Clustering Based

Nearest Neighbor
based
Spectral

Information Theo-
retic

Section 7.2.1

Section 7.1

Section 7.2.2

Section 4.2

Section 4.1

Section 4.3

Section 4.4

Section 6

Section 5

Section 9

Section 8

NIDES [Anderson et al. 1994; Anderson et al. 1995;
Javitz and Valdes 1991], EMERALD [Porras and
Neumann 1997], Yamanishi et al [2001; 2004], Ho
et al. [1999], Kruegel at al [2002; 2003], Mahoney
et al [2002; 2003; 2003; 2007], Sargor [1998]
Gwadera et al [2005b; 2004], Ye and Chen [2001]

Chow and Yeung [2002]

Siaterlis and Maglaris [2004], Sebyala et al. [2002],
Valdes and Skinner [2000], Bronstein et al. [2001]
HIDE [Zhang et al. 2001], NSOM [Labib and Ve-
muri 2002], Smith et al. [2002], Hawkins et al.
[2002], Kruegel et al. [2003], Manikopoulos and Pa-
pavassiliou [2002], Ramadas et al. [2003]

Eskin et al. [2002]

ADAM [Barbara et al. 2001a; Barbara et al. 2003;
Barbara et al. 2001b], Fan et al. [2001], Helmer
et al. [1998], Qin and Hwang [2004], Salvador and
Chan [2003], Otey et al. [2003]

ADMIT [Sequeira and Zaki 2002], Eskin et al.
[2002], Wu and Zhang [2003], Otey et al. [2003]
MINDS [Ertoz et al. 2004; Chandola et al. 2006],
Eskin et al. [2002]

Shyu et al. [2003], Lakhina et al. [2005], Thottan
and Ji [2003],Sun et al. [2007]

Lee and Xiang [2001],Noble and Cook [2003]

Source: Chandola et al. 2009
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Anomaly Detection (2)
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Features used
packet sizes
IP addresses
ports
header fields
timestamps
inter-arrival times
session size
session duration
session volume
payload frequencies
payload tokens
payload pattern
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Ithe Holy Grail ...

® Anomaly detection is extremely appealing.

® Promises to find novel attacks without anticipating specifics.
® |t’s plausible: machine learning works so well in other domains.
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® Anomaly detection is extremely appealing.

® Promises to find novel attacks without anticipating specifics.
® |t’s plausible: machine learning works so well in other domains.

® But guess what’s used in operation? Snort.

® We find hardly any machine learning NIDS in real-world deployments.
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Ithe Holy Grail ...

® Anomaly detection is extremely appealing.

® Promises to find novel attacks without anticipating specifics.
® |t’s plausible: machine learning works so well in other domains.

® But guess what’s used in operation? Snort.

® We find hardly any machine learning NIDS in real-world deployments.

® Could using machine learning be harder than it appears!?
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VVhy is Anomaly Detection Hard!?

The intrusion detection domain faces challenges that
make it fundamentally different from other fields.




VVhy: is Anomaly Detection Hard?

The intrusion detection domain faces challenges that
make it fundamentally different from other fields.

Outlier detection and the high costs of errors
How do we find the opposite of hormal?
Interpretation of resuilts
What does that anomaly mean?
Evaluation
How do we make sure it actually works!?
Training data
What do we train our system with!?
Evasion risk
Can the attacker mislead our system?
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Machine Learning for: Classification

FeatureY
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Machine Learning for: Classification

FeatureY T

Classification Problems

Optical Character Recognition
Google’s Machine Translation
Amazon’s Recommendations

Spam Detection
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Outlier Detection
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Outlier Detection

FeatureY T
g

Closed World Assumption
Specify only positive examples.
Adopt standing assumption that the rest is negative.

Can work well if the model is very precise, or mistakes are cheap.
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VWhat is Normal?

® Finding a stable notion of normal is hard for networks.

® Network traffic is composed of many individual sessions.

® | eads to enormous variety and unpredictable behavior.
® Observable on all layers of the protocol stack.
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Self-Similarity of Ethernet Traffic
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Self-Similarity of Ethernet Traffic
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Self-Similarity of Ethernet Traffic
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Self-Similarity of Ethernet Traffic
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One Day of Crud at ICS|

Postel’s Law: Be strict in what you send and liberal in what you accept ...




One Day of Crud at ICS|

active-
connection-reuse

DNS-label-len-gt-
pkt

HTTP-chunked-
multipart

possible-split-
routing

bad-Ident-reply

DNS-label-too-
long

HTTP-version-
mismatch

SYN-after-close

bad-RPC

DNS-RR-length-
mismatch

illegal-%-at-end-
of-URI

SYN-after-reset

bad-S¥YN-ack DNS-RR-unknown- inappropriate-FIN SYN—lnS{Qe—

type connection

bad-TCP-header- DNS-truncated- IRC-invalid-1line SYN-seq-jump
len answer

base64-illegal-

DNS-len-1lt-hdr-

line-terminated-

truncated-NTP

data-after-reset

double-%-in-URI

no-login-prompt

encoding len with-single-CR
connection- DNS-truncated-RR- malformed-SSH- unescaped-%-in-
originator-S¥YN-ack rdlength identification URI
unescaped-

special-URI-char

data-before-
established

excess-RPC

NUL-in-line

unmatched-HTTP-
reply

too-many-DNS-
queries

FIN-advanced-
last-seq

POP3-server-sending-
client-commands

window-recision

DNS-label-
forward-compress-

fragment-with-DF

I55K in total!
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VWhat is Normal?

® Finding a stable notion of normal is hard for networks.

® Network traffic is composed of many individual sessions.

® |eads to enormous variety and unpredictable behavior.
® Observable on all layers of the protocol stack.

® Violates an implicit assumption: Outliers are attacks!

® |gnoring this leads to a semantic gap

® Disconnect between what the system reports and what the operator wants.
® Root cause for the common complaint of “too many false positives”.

® Each mistake costs scarce analyst time.
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Mistakes in ©Other Domains

OCR Spell Checker
Image Analysis Human Eye
Translation Low Expectation
Collaborative .
. . Not much impact.
Filtering
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Mistakes in ©Other Domains

OCR Spell Checker
Image Analysis Human Eye
Translation Low Expectation
Collaborative .
. . Not much impact.
Filtering

“ [Recommendations are] guess work.
Our error rate will always be high.” =
- Greg Linden (Amazon) rereen)

\
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Building a Good Anomaly Detector

® Limit the detector’s scope.

What concrete attack is the system to find?
Define a problem for which machine learning makes less mistakes.

® Gain insight into capabilities and limitations.

\'A%
\'A%
\'A%

nat exactly does it detect and why? What not and why not!?
nat are the features conceptually able to capture!

nen exactly does it break!?

Acknowledge shortcomings.

Examine false and true positives/negatives.
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Image Analysis with Neural Networks
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Image Analysis with Neural Networks
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VWhat Can we Do/

® |imit the detector’s scope.

What concrete attack is the system to find?
Define a problem for which machine learning makes less mistakes.

® Gain insight into capabilities and limitations.

What exactly does it detect and why? What not and why not!?
What are the features conceptually able to capture!?

When exactly does it break!?
Acknowledge shortcomings.
Examine false and true positives/negatives.

® Assume the perspective of a network operator.

How does the detector help with operations!?
Gold standard: work with operators. If they deem it useful, you got it right.




VWhat Can we Do/

® |imit the detector’s scope.

® What concrete attack is the system to find?
® Define a problem for which machine learning makes less mistakes.

® Gain insight into capabilities and limitations.

Once you have done all this ...
... You might notice that you now know enough about
the activity you're looking for that you don’t need any
machine learning.

® Assume the perspective of a network operator.

® How does the detector help with operations?
| ® Gold standard: work with operators. If they deem it useful, you got it right.
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VVhy is Anomaly Detection Hard?

The intrusion detection domain faces challenges that
make it fundamentally different from other fields.

e QOutlier detection and the high costs of errors
* |nterpretation of results
* Evaluation

* [raining data

e FEvasion risk




Conclusion

® Machine learning for intrusion detection is challenging.

® Reasonable and possible, but needs care.
® Consider fundamental differences to other domains.

® There is some good anomaly detection work out there.

® |f you do anomaly detection, understand and explain.

® |f you are given an anomaly detector, ask questions.
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Conclusion

® Machine learning for intrusion detection is challenging.

® Reasonable and possible, but needs care.
® Consider fundamental differences to other domains.

® There is some good anomaly detection work out there.

® |f you do anomaly detection, understand and explain.

® |f you are given an anomaly detector, ask questions.

“Open questions:

[...] Soundness of Approach: Does the approach actually
detect intrusions? Is it possible to distinguish anomalies

related to intrusions from those related to other factors?”
-Denning, 1987 S
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Tthanks for your attention.

Robin Sommer
International Computer Science Institute, &
Lawrence Berkeley National Laboratory

robin@icsi.berkeley.edu
http://www.icir.org
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